Steven Pinker: How Soon Will Genetic Enhancement Create Smarter Humans?

I think it’s unwise to make a confident prophecy
in what technology will or won’t eventually be able to do. I think that cuts both ways.
That is it’s people have looked foolish by saying that something will never happen, but
they’ve also looked foolish by saying that something is inevitable. So there are things
that we can accomplish technologically that we as a society have chosen not to, such as
passenger supersonic air transport. I think if you were to say to someone in 1957 the
speed of commercial jets now is going to be the same as the speed of the commercial jets
in 2016, 60 years from now, they would say you’re nuts. Technology goes up, up, up, up,
but sometimes it doesn’t. Because people don’t like sonic booms and jet fuel got too expensive.
Likewise, if you would’ve said in 1972 no one is going to set foot on the moon for another
44 years and counting, again. They would say technology always lifts us higher and higher,
but sometimes it doesn’t. The Cold War ended. People lost interest. There are all kinds
of social and economic factors that in combination make the future of technology inherently unpredictable.
And I think in engineering human intelligence, to say nothing of human genius, no one knows
but I would put my money with no. For one thing, there are moral and legal taboos. People
think that introducing traits into offspring is a form of eugenics and is on a slippery
slide to Nazism. I happen to think that that is a bogus ethical argument, but it is by
far the majority that’s a cool argument and in many countries genetic enhancement is or
will be illegal. And it’s going to take a huge force to overcome that. Just as cloning
is illegal in virtually every country, when Dolly the sheep was cloned in 1997 there were
confident predictions that there’s nothing you can do to stop human cloning. It was just
around the corner and here we are almost 20 years later and it has not happened. Also, the task of engineering high intelligence
is turning out to be a lot harder than one might have thought. In the late ’90s it was
thought well sooner or later we’ll find some high IQ genes; they’ll give you three or four
points. You’d put in a handful of them and you get a much smarter baby. There was going
to be the gene for musical talent and the gene for athletic coordination. We have every
reason to believe that those traits are substantially inheritable. We’ve known that for decades
just because of twin and adoption studies. On the other hand, we also know that the genes
responsible are going to, each one of them is going to have an incy wincy effect and
there are dozens, hundreds, maybe thousands of them. So making your child smart is not
a question of putting in one high IQ gene, it may be a question of putting in a hundred
genes or a thousand genes. Every time you monkey with the genome you are taking a chance
that something will go wrong. Also, those genes, the ones that we have identified, and
we’ve made enormous progress in just a few years ago there was not a single gene you
could point to that had a positive effect on intelligence, now we can point to a few
of them. They have incy wincy effects, a third of an IQ point. But on the other hand we identify
them with their correlations with intelligence. We have no idea what they do. I mean if you
find that any of those genes is actually expressed in the brain then you’ve had a really good
day as a scientist. But to know what the totality of their effects are, positive and negative,
is something that we’re not going to know for a long time, if ever when you’re talking
about hundreds or thousands of genes. How do we know that one of those genes that raises
your IQ by a third of a point doesn’t also increase your chance of epilepsy or schizophrenia
or brain cancer. Now, you’re going to go to a review board and ask for permission to monkey
with a human embryo and they’re going to say so we know what the benefits are of implementing
this gene, what are the costs? And the answer is we don’t know. You think that they’re going
to have – that that’s going to meet approval? Or do you think for that matter that parents
are going to be willing to take such chances with the biological integrity of their children?
That in exchange for an increase of an IQ points or two they’re going to take some unknown
risk of making the child schizophrenic or bipolar or some other disease that we may
not know of who’s probabilities we don’t know? Not so clear that they will. Now, there is the argument parents will do
anything to enhance the flourishing of their children. Look at the way parents buy test
prep courses and struggle to get them into the Ivy’s and so on. I think that’s true probably
of the social circle of the people who make those predictions where IQ has outsize importance.
But even then there are – people do strongly distinguish biological interventions from
environmental ones, at least psychologically. That’s why we still don’t have any sport where
athletes can dope all they want. You might say what difference does it make whether you
increase your red blood cell count by training at a high altitude or by taking a drug? Well,
biologically there may not be that much of a difference, psychologically there’s all
the difference in the world. We just don’t think that it is the same thing when you can
cheat and achieve an advantage through sheer biological interventions. I wouldn’t say that
for sure that’s going to stand in the way of parents enhancing their children genetically,
but on the other hand I think it’s unwise to say that it will have no effect, that we
know that those psychological barriers will be overcome.


Add a Comment

Your email address will not be published. Required fields are marked *